Subscribe To Roll-Kraft
Receive the latest news from Roll-Kraft.
By Baicheng Wen, Ph.D. Roll-Kraft, Inc. Ohio, U.S.A.
1.0 Introduction
One of the goals of every manufacturing company is minimizing production costs in order to maximize profits. In the tube and pipe industry, this can be accomplished by selecting the correct style of tooling before production begins. Greater profits will result from increased mill efficiency, reduced downtime, and extended tooling life. Three basic styles of tooling are used to make tube and pipe—(1) solid, (2) split, and (3) carbide inserted. The total cost (initial, rework, and lifetime), as well as the useful production life, for these three styles varies greatly from one to another. This article will examine these cost differences, including the cost effectiveness of mill setup, to help tube and pipe manufacturers select the most profitable tooling for their particular operation.
2.0 Tube and Pipe Tool Designs
2.1 Solid Rolls
Solid rolls are the most common tooling used to make tube and pipe. This one-piece design has the lowest initial cost of any of the three styles of tooling due to its simplicity in construction. Solid rolls are preferred for several reasons. In addition to the initial cost factor, solid rolls with small root diameters are selected to produce high driving forces to maximize mill efficiency. Secondly, physical limitations of the mill, such as vertical center distance, roll space and bottom line, might require that smaller, solid rolls be used. Finally, solid rolls are more economical for limited production runs. The main drawback to using solid rolls is the cost of rework (this includes those additional costs associated with mill re-adjustment) and downtime that results from the rework. For example reworking a set of solid rolls reduces the root diameter. If these rolls are in the breakdown section, the forming line of the mill is lowered, requiring mill adjustment to raise the bottom driveshaft before production can resume. Shims will be required on mills with limited or non-vertical adjustment capabilities, or the side roll stands must be adjusted. These activities increase
downtime and operating costs. Additionally, reworked solid rolls turn slower, reducing forming speed if the drive speed on the mill is non-adjustable. The net result is a decrease in production. Also, reworking the solid rolls in one section of the mill might require reworking the entire set, regardless of condition or need, in order to maintain the correct forming line and/or mill speed.
2.2 Split Rolls
A split roll is a two-piece component bolted together to form a solid roll. A roll of this design is physically larger (wider flanges require more roll space on the mill) than a conventional solid roll used to produce the same size tube or pipe. FIGURE 1 illustrates a typical split roll.
3.3 Productivity
Productivity (feet produced per dollar) is calculated by dividing the production footage by the total tooling cost. This parameter can be used to evaluate each of the three different tooling designs. The results are shown in FIGURE 5. This graph shows that productivity is increased by at least 30 percent (8 feet/dollar vs. 6 feet/dollar) by using split roll tooling instead of solid roll tooling. However, significant gains in productivity can be achieved if carbide inserted tooling is selected. On average, productivity can be increased by a factor of three (greater than 25 feet/dollar) when utilizing this design of tooling. It should be noted that these productivity increases are more likely to be realized in long, continuous production runs.
4.0 Other Cost Reduction Considerations
A common cost reduction practice among tube and pipe manufacturers is the use of more than one style of tooling on a mill. For instance, using split roll tooling in the fin or sizing section and solid tooling on the rest of the mill. Success in reducing costs can be achieved if the mill operator is experienced in determining the
correct combinations of tooling to use. On the other hand, inexperienced operators can make the wrong decisions that result in both increased downtime and operating costs. Proper training in mill operation, forming processes and forming can help these less experienced operators make better tooling decisions to obtain greater mill efficiencies and lower operating costs.
5.0 Discussion
The comparisons of tooling costs in this article were a general discussion. For a specific forming operation, the manufacturer needs to gather as much information as possible in order to select the correct, low cost tooling. The first step in the tooling selection process is gathering all the mill specifications, including the mill layout. Secondly, define and verify the material that will be formed, the mechanical properties of that material and the anticipated production volume. Finally, refer to the discussion in Section 2.4 to calculate the projected tooling cost for each tooling design in order to select the lowest cost tooling for that particular production run. Tube and pipe manufacturers should also consult with their tooling suppliers to answer specific questions about their particular forming operation. Technical assistance from suppliers on cost comparisons and tooling performance is invaluable in the tooling selection process.
Simply contact us here or call and get answers 24/7.
Contact Us (888) 953-9400Roll-Kraft is pleased to announce the appointment of Mr. Mike Samplak to the position of Plant Manager at its headquarters facility in Mentor, OH.
Roll-Kraft is pleased to announce the appointment of Frank Lowery to Vice President of Roll Form Applications.
Roll-Kraft is pleased to announce the appointment of Kevin Gehrisch to the position of President.